

METODICKÉ POKYNY PRO UČITELE

K čemu aktivita slouží?

Žáci se v této aktivitě:

- seznámí s možností řízení pohyblivého robota pomocí ultrazvukového senzoru,
- naučí reagovat na změny v okolí robota a měnit jeho rychlost v závislosti na směru pohybu překážky.

Přepokládaný rozsah aktivity

Minimálně 2 x 45 minut

Jak při řešení aktivity postupovat?

Aktivita patří v učebnici k těm náročnějším. Kontrolujte vhodné umístění ultrazvukového senzoru na modelu robota. Přeskočení některých dílčích aktivit bude mít za následek nepochopení náročnějších částí kapitoly. Sledujte tedy, zda žáci postupují lineárně.

Co si pro řešení aktivity připravit?

Dostatečně velký prostor pro testování funkčnosti vytvořených programů.

K simulaci překážky na cestě velmi dobře poslouží také krabice se stavebnicí EV3, které mají dostatečnou výšku a snadno se přesouvají.

Popis částí aktivity, předpokládané řešení

8.1 Měření vzdálenosti ultrazvukovým senzorem

Seznámení s fungováním ultrazvukového senzoru.

8.1.1 Úkol

Zadání: Jak dlouhý je stůl v učebně? Jak široké a vysoké je okno? Jak daleko od vás je nejbližší zeď?

Řešení: Hodnota zjištěná senzorem musí být odeslána k vypsání na displej (viz obrázek 1). Aby byl výpis plynulý, je za vykreslení na displej přidán blok **Wait**, který oddaluje vypsání nově naměřené hodnoty o 0,2 vteřiny.

Obrázek 1 – Správné řešení úkolu.

Upozornění: Pozor: pro odeslání dat na displej je třeba nejprve zobrazit u bloku **Display** vstupní port. Jak toho docílit, vidíte na obrázku 2.

Obrázek 2 – Zobrazení vstupního portu u bloku Display.

8.1.2 TIP

V této sekci žákům představujeme programový blok **Text** (viz obrázek 3), který díky třem vstupním portům dokáže sloučit tři textové řetězce do jednoho funkčního celku.

Obrázek 3 – Programový blok Text.

8.1.3 Měříme

Úkol 1: Jak dlouhý je stůl v učebně?

Vysvětlení: Při řešení tohoto úkolu by si žáci měli uvědomit, že ultrazvukový senzor měří správně jen tehdy, pokud se může vyslaný signál odrazit zpět a být přijat a vyhodnocen. Při měření délky stolu si tak budou muset pomoci například sešitem nebo deskou, kterou umístí na druhý konec stolu.

Úkol 2: Jak široké a vysoké je okno?

Vysvětlení: Při řešení tohoto úkolu je třeba, aby si žáci pomohli a spolupracovali. Vždy ovšem záleží na typu a provedení okna. Měli by si upevnit znalosti zejména z prvního úkolu.

Úkol 3: Jak daleko od vás je nejbližší zeď?

Vysvětlení: Řešení úkolu vyžaduje práci s větší vzdáleností. Žáci by měli přijít na to, že senzor má určitý limit pro měření vzdálenosti a měří pouze v rozsahu 0 až 255 cm.

Úkol 4: Jak silný je sešit?

Vysvětlení: Zde se setkáváme s opačným problémem než v předchozím úkolu. Žáci se naučí, že senzor má problém také s měřením velmi malých vzdáleností. Pomocí senzoru není možné měřit v řádech jednotek centimetrů.

Úkol 5: Jak vysoká je láhev?

Vysvětlení: Úkol pro rychlé žáky, sloužící k ověření dříve získaných znalostí.

Úkol 6: Kolik 4x2 LEGO kostiček bychom potřebovali na sebe postavit, aby byly vysoké jako váš spolužák?

Vysvětlení: Rozšiřující úkol pro rychlé žáky. Žáci musí změřit nejen svého spolužáka, ale také kostičku LEGO a následně spočítat výsledek.

8.1.4 Rozsahy

Otázka 1: V jakém rozsahu se hodnoty zobrazují?

Odpověď 1: Senzor měří hodnoty v rozsahu od 0 do 255 cm nebo od 0 do 100 palců.

Otázka 2: Co se děje, pokud tyto hodnoty překročíme?

Odpověď 2: Pokud je hodnota překročena, zobrazí se maximální možná (např. 255 cm).

Otázka 3: Jaká je přibližná přesnost senzoru (mm, cm, dm, m)?

Odpověď 3: Hodnoty měřené senzorem lze vypisovat na desetiny centimetru. Změřit naprosto přesnou hodnotu na desetinu je ovšem téměř nemožné. Přibližná přesnost je v řádech centimetrů.

Otázka 4: Jak se senzor chová, pokud ho zcela zakryjeme dlaní?

Odpověď 4: Zobrazuje hodnotu 255.

Otázka 5: Jak se senzor chová, pokud měříme nerovné či malé předměty (např. prsty)?

Odpověď 5: Naměřená hodnota kolísá, protože vyslaný ultrazvukový signál může projít mezerou mezi prsty.

8.2 Bezpečnostní pojistka – zastavení před překážkou

Informace k řešenému úkolu, jehož výsledkem bude funkční bezpečnostní pojistka.

8.2.1 Aktivita

Zadání: Vytvořte program, díky kterému váš robot pojede neustále rovně vpřed, a pokud se před ním objeví překážka, zastaví od ní v bezpečné vzdálenosti 15 cm.

Řešení: Základem řešení je podmínka, která neustále ověřuje, jaká je aktuální hodnota naměřená senzorem. Jakmile je větší než 15 cm, robot pokračuje vpřed. V opačném případě se zastaví (viz program na obrázku 4).

Obrázek 4 – Správné řešení aktivity Bezpečnostní pojistka.

TIP: Seznámení s podmínkou řízenou vzdáleností naměřenou ultrazvukovým senzorem.

8.2.2 Otestování

Při detekování předmětu by měl robot okamžitě prudce zastavit. Jak prudké zastavení bude, ovlivňuje z velké části rychlost pohybu robota. Pokud se budeme s překážkou přibližovat, robot nebude reagovat, pokud se naopak budeme vzdalovat, bude mít tendenci překážku dojet. Překážky, které jsou nízké a jsou tak pod úrovní snímání senzoru, nebudou zachyceny senzorem a robot je přejede.

Otázky:

- Které problémy by mohly nastat?
- Vymyslíte situace, při kterých by mohlo naše či řešení jiných selhat?
- Jak správné chování otestujeme?
- Funguje naše řešení? Co jste při testování zjistili?
- Šlo by něco zlepšit?

Předložené otázky slouží k rozpoutání diskuse nad aktuálně vytvořeným programem a jeho testováním. Ptejte se žáků na problémy, se kterými se setkali, a na chování jejich robota. Společně vymýšlejte možné úpravy a diskutujte nad ideálním řešením.

8.2.3 SOS nápověda

V této sekci naleznou žáci odpovědi na otázky z předchozí aktivity. Postupně jsou vedeni procesem testování chování robota. Ve výsledku by měli zijstit, jak se robot chová, když se od něj překážka vzdaluje, a jak reaguje, když se přibližuje. V závěru by se měli na základě chování robota zamyslet nad tím, jaké překážky by robot nemusel úplně správně detekovat. Vylepšení stávajícího programu se věnujeme v další části.

8.3 Reakce na pohyblivou překážku – adaptivní tempomat

Pokud použijeme pohyblivou překážku, robot na ni neumí plynule reagovat. V této části se proto žáci naučí sestavit program, který zajistí couvání robota v případě, že se překážka přibližuje.

8.3.1 Úkol

Zadání: Vytvořte program, pomocí kterého si bude robot udržovat od překážky před ním (např. auta) odstup 20 cm. Pokud se bude vzdalovat, dojede ji, pokud se bude přibližovat, začne couvat.

Očekávané řešení: Zkušenější žáci se možná pustí do okamžitého řešení úkolu, který pro ně může představovat výzvu. Pro méně zkušené jsou určeny další části aktivity.

Obrázek 5 – Možné řešení úkolu 8.3.1.

8.3.2 Testujeme (odpovědi na otázky)

- 1. Stavy: Ve kterých stavech se může fungující robot nacházet?
 - A. Jet vpřed
 - B. Couvat
 - C. Stát
- 2. Hranice změny: V jaké vzdálenosti se mění stavy? Doplňte číslo (kritickou hodnotu).
 - 20 cm
- 3. Testování: Nejprve vyzkoušejte běžný režim a přechody mezi stavy, ve kterých se mění fungování programu.
- 4. Změna stavů: Dále se zaměříme na to, zda se robot chová správně při přechodu mezi stavy, kdy se mění fungování programu.
- 5. Extrémy: Otestujte i chování v extrémních hodnotách (zcela volné místo, objekt velmi blízko).

Co jste zjistili?

Robot začne při zastavení před překážkou prudce cukat vpřed a vzad. Důvodem je měnící se hodnota naměřená při prudkém cukání. Blíže je tento problém popsán v kapitole 8.3.4 Stabilizujeme.

8.3.3 Vláček

Otázka: Také by vás zajímalo, jak se naši roboti chovají, když je dáme za sebe tak, aby vytvořili kolonu (vláček)?

Řešení: Až budou mít žáci programy vytvořené, zkuste tuto aktivitu s roboty zrealizovat. Žáci si mohou svá řešení porovnat a reálně otestovat jejich chování. Následně můžete rozvinout diskuzi nad poznatky, které žákům vyplynuly z testování.

8.3.4 Stabilizujeme

V této sekci jsou popsány problémy, které mohou u nejjednoduššího programového řešení nastat, a také jejich důvody. V další části se budou žáci zabývat jejich odstraněním.

8.3.5 SOS nápověda

Sekce s nápovědou obsahuje vysvětlení problémů v chování robota. Aktivita 8.3.4 je poměrně náročná a žáci mohou mít s jejím řešením potíže. Pokud se k vyřešení aktivity nezvládnou dopracovat, mohou si přečíst vysvětlení správného řešení. Jeho podobu s žáky diskutujte a ověřte si, že skutečně chápou důvody chování robota.

sos

8.4 Různé způsoby stabilizace

Stabilizaci pohybu robota lze provést několika způsoby. Žáci se s nimi v této aktivitě seznámí.

8.4.1 Úkol

Zde si žáci stáhnout soubor s příponou .ev3 se zadáním (programy), které budou testovat.

A. Stabilizace A

Stabilizace spočívá v: snížení rychlosti.

Hlavní výhody: škubání už není tak razantní.

Hlavní nevýhody: jízda je pomalá, robot nestíhá couvat před překážkou, problém se příliš nevyřešil.

B. Stabilizace B

Stabilizace spočívá v: robot nereaguje na změnu velikosti mezery o rozměrem od 15 do 25 cm. Vznikla mezera o velikosti 10 cm, na kterou nereaguje.

Hlavní výhody: bylo odstraněno škubání.

Hlavní nevýhody: robot prudce vyrazí vpřed nebo vzad při změně polohy překážky. Rozjezd není adekvátně plynulý.

C. Stabilizace C

Stabilizace spočívá v: plynulé změně rychlosti otáčení motorů v závislosti na naměřené vzdálenosti. Robot se tak pohybuje pomalu, pokud se překážka pomalu přibližuje, a zrychluje, pokud je změna razantnější.

Hlavní výhody: plynulá změna rychlosti.

Hlavní nevýhody: v podstatě žádné.

TIP: Představení bloku Math, který se používá pro matematické operace. S jeho využitím je provedena stabilizace C.

8.4.2 Výsledek

Řešení: Nejlepším způsobem stabilizace je varianta C, která používá automatický přepočet rychlosti otáčení motorů na základě naměřené vzdálenosti ultrazvukovým senzorem.

METODICKÉ POKYNY PRO UČITELE

8.5 Rozšíření úlohy 🔯

Úkol: Zařiďte, aby robot při detekci překážky postupně zpomaloval a ve vzdálenosti 20 cm před ní úplně zastavil. Pokud se překážka začne vzdalovat, bude robot postupně zrychlovat a snažit se jí dojet. Ve chvíli, kdy bude mezera mezi překážkou a robotem dostatečně velká (např. 40 cm), robot pojede 100% rychlostí.

Řešení: Na obrázku 6 uvádíme možné řešení aktivity s využitím proměnné.

Obrázek 6 – Možné řešení rozšiřující úlohy pro rychlé žáky.

Úkol: Rozšiřte program tak, aby robot při couvání vydával varovný tón.

Řešení: Žáci by měli identifikovat správné místo v programu, na které vloží blok pro přehrání volitelného zvuku.

Úkol: Na displeji kromě aktuální vzdálenosti zobrazte i maximální a minimální změřenou vzdálenost.

Řešení: Řešení úlohy kombinuje znalosti výpisu na displej a práci s blokem pro matematické operace.